ln(x^2-6x+5)-ln(x-5)=1

Simple and best practice solution for ln(x^2-6x+5)-ln(x-5)=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ln(x^2-6x+5)-ln(x-5)=1 equation:


Simplifying
ln(x2 + -6x + 5) + -1ln(x + -5) = 1

Reorder the terms:
ln(5 + -6x + x2) + -1ln(x + -5) = 1
(5 * ln + -6x * ln + x2 * ln) + -1ln(x + -5) = 1
(5ln + -6lnx + lnx2) + -1ln(x + -5) = 1

Reorder the terms:
5ln + -6lnx + lnx2 + -1ln(-5 + x) = 1
5ln + -6lnx + lnx2 + (-5 * -1ln + x * -1ln) = 1
5ln + -6lnx + lnx2 + (5ln + -1lnx) = 1

Reorder the terms:
5ln + 5ln + -6lnx + -1lnx + lnx2 = 1

Combine like terms: 5ln + 5ln = 10ln
10ln + -6lnx + -1lnx + lnx2 = 1

Combine like terms: -6lnx + -1lnx = -7lnx
10ln + -7lnx + lnx2 = 1

Solving
10ln + -7lnx + lnx2 = 1

Solving for variable 'l'.

Move all terms containing l to the left, all other terms to the right.

Reorder the terms:
-1 + 10ln + -7lnx + lnx2 = 1 + -1

Combine like terms: 1 + -1 = 0
-1 + 10ln + -7lnx + lnx2 = 0

The solution to this equation could not be determined.

See similar equations:

| 10+2(z-9)=(z+1)-6 | | x^2+.333333333333333333=0 | | -7(t+9)-(t+2)=3 | | -72(x-39)=x+5 | | -82(x-39)=x+5 | | 15t^2+t-6=(t+3)(t-2) | | 2(3x-5)=3x-1 | | -5(t-3)-(t+6)=4 | | 20x+8-3= | | 9cx-5x-160=0 | | 4x-8x+11=3x+25 | | 9=12-c/3 | | 22.43=18.56+3.87 | | -5(t-7)-(t+5)=10 | | -35-5x=13-2x | | (3z-8)(5-z)=0 | | -x=2y^2 | | 3y+6x=13 | | -7.5k+3.2+3.8k+0.9=0.1k-2.1-3.4+k | | 3x+9-8x=17-3x | | A=4x^2y | | 0.89=log(x) | | 6k-(3k-17)= | | y=(2x+3)(x+1)(3x-5) | | 36x^3y-33x^2y+6xy=0 | | -2y(3y+4)= | | -90(z-87)=z+(-82) | | x^2+32x+11=0 | | 3x+12=20-x | | 8+5(x-8)=10-5(x-5) | | 10-32x5/9 | | 7+2x=21-5x |

Equations solver categories